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Abstract. We investigate multiexciton bound states in a semiconducting phase of divalent hexaborides. Due
to three degenerate valleys in both the conduction and valence bands the binding energy of a 6-exciton
molecule is greatly enhanced by the shell effect. The ground state energies of multiexciton molecules
are calculated using the density functional formalism. We also show that charged impurities stabilize
multiexciton complexes leading to condensation of localized excitons. These complexes can act as nucleation
centers of local moments.

PACS. 71.35.-y Excitons and related phenomena – 71.35.Lk Collective effects (Bose effects, phase
space filling, and excitonic phase transitions) – 77.84.Bw Elements, oxides, nitrides, borides, carbides,
chalcogenides, etc.

1 Introduction

The recent discovery of unusual high-temperature weak
ferromagnetism in lightly doped divalent hexaborides,
CaB6, SrB6, BaB6 [1], has raised the need to understand
the properties of these compounds in a broader perspec-
tive. The unique features of the novel type of ferromag-
netism in Ca1−xLaxB6 are (i) there are no partially filled
d- or f -orbitals, (ii) magnetism appears only at finite dop-
ing 0 < x < 2%, and (iii) tiny magnetic moments (∼ 0.1µB

per doped electron) are very robust and develop at tem-
peratures as high as 600–1000 K. All these features are
consistently explained by ferromagnetism of a doped ex-
citonic insulator [2]. Thus, not only is the magnetic phase
quite unusual, but also the undoped stoichiometric hex-
aborides may also exhibit a novel type of ground state
— a condensate of bound electron-hole pairs or excitons.
The theory of excitonic insulators has been developed long
time ago, see [3]. However, divalent hexaborides seem to
be the first experimental realization of an excitonic insu-
lator made possible by their unique band structure. Band
structure calculations [4,5] predict a small overlap of va-
lence and conduction bands at the 3 symmetry related
nonequivalent X points in the cubic Brillouin zone. There
is a certain ambiguity both from theoretical [4,2] and ex-
perimental [6,7] points of view regarding whether the sto-
ichiometric divalent hexaborides have a small band over-
lap or a small band gap. Precise treatment of correlation
effects in electron-hole plasma [8] beyond the standard ap-
proximations of band structure calculations predicts a first
order transition from a semiconductor to a semimetal un-
der pressure. Therefore, stoichiometric hexaborides may
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be on a semiconducting side of the phase diagram close to
the first order metal-insulator transition.

Motivated by the unique band structure with equal
number of degenerate valleys in conduction and valence
bands with different symmetries, we investigate here the
formation of multiexciton molecules and complexes in
these materials, assuming that there is a finite band gap
between conduction and valence bands. In the effective
mass approximation the valley index appears as an ex-
tra quantum number. By analogy with nuclei we expect a
shell structure of the single particle orbits where six elec-
trons and six holes with different spin and valley quantum
numbers can occupy the lowest shell. Hence, the 6-exciton
molecule is expected to be the most stable configuration.

Binding energy calculations of several excitons have
been reported in the late seventies for multiexciton com-
plexes bound to impurities in Si and Ge [9–12]. It was
recognized that Hartree-Fock calculations do not work
for multiexciton complexes because the main contribu-
tion to binding energy comes from correlation effects and
that the density functional formalism provides a useful
tool to include such correlation effects. In this paper we
consider both multiexciton molecules and multiexciton
complexes bound to impurities and calculate their bind-
ing energies within the framework of the density func-
tional theory. The Kohn-Sham equations are single parti-
cle Schrödinger equations for electrons and holes moving
in a self-consistent potential. These equations connect the
density functional formalism to the shell model of multi-
exciton complexes and molecules [9].

The binding energies of exciton molecules provide in-
formation on whether a Bose gas of multiexciton molecules
is stabilized between semiconducting and semimetallic
phases when the band gap is varied from positive to
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negative values. In the previous study by two of us [8]
an intermediate phase of a free exciton gas stabilized by
intervalley scattering processes was considered. Binding of
several excitons is an alternative mechanism for appear-
ance of an intermediate phase between a semiconductor
and a semimetal. The binding energy per electron-hole
pair in the molecule has to be compared to the minimal
ground state energy of the electron-hole liquid, which ac-
cording to reference [8] is Emin

g.s. = −1.55Ex in units of
the excitonic Rydberg Ex. As another application of our
results we suggest that the formation of multiexciton com-
plexes near donor impurities (e.g., La-substitutions) can
be a source of local magnetic moments, which appear in
a semiconducting state. Such moments could explain the
unusual NMR relaxation rate measurements in the hexa-
borides [13].

2 Method

We use the effective mass approximation considering elec-
trons near minima in the conduction band and holes near
the maxima of the valence band as oppositely charged
quasiparticles with anisotropic effective masses which in-
teract via a screened Coulomb potential V (r) = e1e2/εr,
ε being the static dielectric constant. For CaB6 the prin-
cipal values of the effective mass tensor in units of the
bare electron mass are given by m‖e = 0.504, m⊥e = 0.212
(conduction band) and m

‖
h = 2.17, m⊥h = 0.206 (valence

band). The model Hamiltonian is

Ĥ = T̂ + Û , (1)

T̂ =
∑
λ

∫
dr Ψ†λ(r)KλΨλ(r),

Û =
1
2

∑
λ,λ′

∫
drdr′ Ψ†λ(r)Ψ†λ′(r

′)Vλ,λ′Ψλ′(r′)Ψλ(r),

Vλ,λ′ =
qλqλ′

ε|r− r′| ,

where λ = (κ, ν, σ) with κ = e, h; ν = 1, 2, 3 is the valley
index; σ = ± is the spin index; and qλ is +e for positively
charged holes and−e for negatively charged electrons. The
kinetic energy operator Kλ for one valley is

K(κ,1,σ) = −~
2

2

[
1
m⊥κ

(
∂2

∂y2
+

∂2

∂z2

)
+

1

m
‖
κ

∂2

∂x2

]
· (2)

The expressions for the valleys 2 and 3 are obtained by
cyclic permutations of x, y and z. We investigate the
ground state energy of this Hamiltonian for a given num-
ber of electrons and holes. To treat this problem we use
the density functional formalism which is presented in the
next section. In the following all equations are written
in dimensionless variables. A natural set of units is the
excitonic Rydberg for the energy scale Ex = µe4/2~2ε2

and the excitonic Bohr radius for the length scale ax =
~2ε/µe2, where µ = moemoh/(moe + moh). The reduced

mass µ is determined by optical masses where 3/moκ =
2/m⊥κ + 1/m‖κ.

The density functional theory [14] expresses the
ground state energy in terms of electron and hole den-
sities only and when applied to the Hamiltonian (1) it
gives:

E[nλ(r)] = T [nλ(r)] +Exc[nλ(r)]

+
1
2

∑
λ,λ′

qλqλ′

∫
drdr′

nλ(r)nλ′(r′)
|r− r′| , (3)

nλ(r) is the density of the component λ (see Eq. (1)). The
Coulomb energy is split into a direct Hartree term and
an exchange-correlation term. The exchange-correlation
energy is considered in the local density approximation
which can be expressed as follows:

Exc[nλ(r)] ≈
∫

dr εxc[nλ(r)]
∑
λ

nλ(r). (4)

εxc is obtained from the ground state energy calculations
of a uniform neutral plasma with equal electron and hole
densities. In our case charge neutrality can be locally bro-
ken due to different electron and hole masses. However,
because of a strong Coulomb interaction the two densi-
ties differ only slightly and, therefore, it is reasonable to
calculate εxc substituting an averaged pair density

ne−h(r) =
1
2

∑
ν,σ

[
ne,ν,σ(r) + nh,ν,σ(r)

]
. (5)

Vashishta and Kalia [15] have shown along time ago
that the exchange-correlation energy of a homogeneous
electron-hole liquid is only weakly dependent on several
band characteristics of a semiconductor, such as the val-
ley degeneracy, the anisotropy, and the electron-hole mass
ratio. The reason is that the anisotropic contribution from
the exchange energy cancels out the contribution of the
correlation energy for these band characteristics.This ob-
servation has been later confirmed by Takada [16] who
used a different technique. Vashishta and Kalia fitted εxc

from their self-consistent calculations to a simple analytic
expression

εxc(rs) =
a+ brs

c+ drs + r2
s

, (6)

where a = −4.8316, b = −5.0879, c = 0.0152, d = 3.0426,
and rs = (3/4πa3

xne−h)
1
3 is the dimensionless distance be-

tween carriers.

The densities in equation (3) are related to the solution
of the Kohn-Sham equations [17] which are self-consistent
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one-particle Schrödinger equations:[
−µK̂λ + Vλ(nλ, r)

]
ψλi(r) = ελiψλi(r), (7)

Vλ = qλ

∫
dr′

∑
λ′ qλ′nλ′(r

′)
|r− r′| +

1
2
φxc[ne−h(r)],

φxc[n] =
d(nεxc[n])

dn
,

nλ(r) =
Nλ∑
i=1

|ψλi(r)|2.

The sum of the eigenvalues ελi over all occupied states
(λ, i) does not give the energy of the molecule but it can
be directly related to it by:

E =
∑
λ,i

ελi −
1
2

∑
λ,λ′

qλqλ′

∫
drdr′

nλ(r)nλ′(r′)
|r− r′|

+
∫

dr
{
εxc[ne−h(r)]− φxc[ne−h(r)]

}
ne−h(r). (8)

An approximate solutions to the Kohn-Sham equations
can be obtained by using a variational ansatz for ψλi and
minimizing the energy (8). Alternatively, one can choose
to solve the Kohn-Sham equations directly imposing a self-
consistency requirement. We calculate a few simple cases
in both ways and then resort to a variational approach in
more complicated situations.

3 Binding energy calculation for multiexciton
molecules

3.1 Isotropic and equal electron and hole masses

For isotropic masses (m‖κ = m⊥κ ≡ mκ), we use the spher-
ical symmetry of the ground state wave function and the
effective potential V (r):

ψλ,nlm(r) = Rλ,nl(r)Ylm(θ, φ). (9)

Defining σe−h = me/mh and Rλ,nl(r) = χλ,nl(r)/r, we
obtain the l = 0 Kohn-Sham equations for electrons and
holes:[

− 1
1 + σe−h

d2

dr2
+ Ve

]
χe,n0(r) = εe,n0χe,n0(r),[

− σe−h

1 + σe−h

d2

dr2
+ Vh

]
χh,n0(r) = εh,n0χh,n0(r). (10)

The two equations differ only in the kinetic energy term
because of unequal electron and hole masses. In this sub-
section we consider the case of equal masses σe−h = 1.
Then, we have only one Kohn-Sham equation to solve.
This equation gives the same density profiles for electrons
and holes and, therefore, the direct Hartree term vanishes
identically. The self-consistent solution of the Kohn-Sham
equation for the lowest eigenvalue is shown in Figure 1 for
a molecule formed of 6 electron-hole pairs.
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Fig. 1. The self-consistent numerical 1s solution of the Kohn-
Sham equation for a molecule formed of six electron-hole pairs.
The resulting effective potential is presented on the bottom
panel and the lowest eigenvalue is shown by a horizontal line.

Table 1. The binding energies EB of molecules consisting
of N excitons for isotropic and equal e and h masses. The
equilibrium radius for a given molecule was estimated by
rM =

R
dr rn(r)/

R
drn(r). All values are given in excitonic

units.

Method N −EB − 1
NEB rM rs(0) r1 ρ1 r2 ρ2

7 7.90 1.13 2.10 0.80 1.2 0.79 2.1 1.19
Variational 6 7.42 1.24 1.65 0.83 1.4 0.72 - -

5 5.77 1.15 1.73 0.91 1.4 0.77 - -
4 4.24 1.06 1.78 1.00 1.4 0.80 - -
3 2.86 0.95 1,87 1.04 1.4 0.86 - -
7 7.92 1.13 2.05 0.83

Self- 6 7.43 1.24 1.64 0.84
consistent 5 5.78 1.16 1.70 0.93

4 4.25 1.06 1.77 1.04
3 2.86 0.95 1.87 1.10

For the variational solution of the Kohn-Sham equa-
tions we take trial functions to be of a ‘Fermi-Dirac’ type:

1s states: R1s(r) =
n1

1 + exp( r−r1ρ1
)
,

2s states: R2s(r) =
n2(1− br)

1 + exp( r−r2ρ2
)
· (11)

Here, r1, ρ1, r2, ρ2 are variational parameters and n1, n2

are normalization constants. The choice of the 1s wave-
function is specially suited for large exciton molecules,
which are described by a ‘droplet’ model: the density is
nearly constant up to the radius r1 and then drops to
zero in a surface layer of width ρ1. The results of the two
methods for different molecule sizes are summarized in
Table 1.

The variational and exact solutions of the Kohn-Sham
equation are in a very good agreement. The difference
in energies does not exceed 0.5% for all molecule sizes.
This agreement is not only achieved in the binding en-
ergies but also in the wave-functions. The comparison of
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Fig. 2. The electron-hole pair densities profiles for numerical
(solid line) and variational (dashed line) solutions of the Kohn-
Sham equations. The results are for the most stable 6-exciton
molecule.

the electron-hole pair densities is plotted in Figure 2 for
a molecule formed of six electron-hole pairs. For small r
the variational trial functions have a linear behavior which
explains the small difference at the center of the molecule
between the exact solution and the variational solution.
The third column of Table 1 is a measure for the sta-
bility of the molecule against dissociation into the next
smaller molecule and one free exciton. We see that only the
5- and the 6-pairs molecules are stable against this disso-
ciation. The 6 electron-hole pairs molecule is in a state
where all single particle states of the lowest shell are filled
up. This represents the most stable configuration. The en-
ergy gain of 24% of Ex per one e-h pair in a 6-exciton
molecule is much higher than a binding energy of an ordi-
nary bi-exciton molecule for nondegenerate bands, which
is only 1.7% of Ex [18,19]. If we go to larger molecules shell
effects appear. The extra energy cost which is needed to
put a further electron into the 2s shell favors clearly the 6
electron-hole molecule. Shell effects appear also if the radii
of different molecules are compared. Surprisingly, the ra-
dius gets smaller when we are filling up the 1s shell. This
feature was also found by Wünsche and co-workers [12].
The radius of the molecule shows a sharp increase if a
further electron-hole pair in the 2s shell is added.

The calculated binding energies have to be compared
to the ground state energy of the metallic electron-hole
liquid. The ground state energy Eg.s.(rs) was calculated
in the RPA approximation in reference [8] with Emin

g.s. =
−1.55Ex at rs = 0.92. The ansatz (6) gives a close value
Emin

g.s. = −1.6Ex, which is reached at the density rs ≈ 1.0.
Both these values are lower than the maximum gain from
formation of a 6-exciton molecule which indicates that in
the chosen approximation there is no intermediate phase
of a dilute Bose gas of exciton molecules.

Although it is difficult to give an exact criterion for the
applicability of the density functional approach to multi-
exciton molecules, it is expected that the theory works
best at high densities, i.e. for large molecules. Further,
these densities have to be compared to the density for

Table 2. The surface tension for exciton molecules of different
sizes.

N 7 6 5 4 3
4πS 0.75 0.79 0.77 0.66 0.49

which the ground state energy per pair for an electron-
hole liquid is minimal rs = 0.92. We expect that in the
limit of large N , the density at the center of the molecule
approaches this value. For a finite number of electron-hole
pairs the density at the center will be higher than rs ≈ 0.9,
since we must include a surface tension which increases the
density. To see if such a picture of an electron-hole droplet
is correct, we split the binding energy EB into a bulk and
a surface term:

EB = Ebulk + Esurf . (12)

We approximate the density by a uniform spherical den-
sity of radius rM. Then the bulk energy can be determined
from the Figure 2 of reference [8]. The surface energy is
proportional to r2

M:

Ebulk = NEg.s.[rs(rM)],

Esurf = 4 πr2
MS. (13)

Table 2 presents the surface tension S evaluated for dif-
ferent molecules. If an electron-hole droplet consideration
of an exciton molecule is correct, then S should be a
constant. From Table 2 we can see that this is true for
molecules formed of 5–7 electron-hole pairs but it fails for
smaller molecules.

3.2 Effect of electron-to-hole mass ratio

In this subsection we lift the approximation of equal elec-
tron and hole masses but continue to replace the effective
mass tensors by isotropic optical masses. The numerical
procedure of solution of the coupled K-S equations (10)
was found to be unstable. In view of the results of the
previous section, we expect, however, to obtain accurate
results using again ‘Fermi-Dirac’-type variational wave-
functions, but this time with different adjustable parame-
ters for electron and holes. Our calculations are limited to
the most stable molecule formed of six electron-hole pairs.
We have varied σe−h from 1 to 0.1. The results are plot-
ted in Figure 3 and further details are presented shown
in Table 3. The total energy of the 6-exciton molecule is
lowered only by an amount of 0.23Ex or 4 % if σe−h varies
from 1 to 0.1. For CaB6 the ratio of electron and hole op-
tical masses is σe−h = 0.89. For this value of σe−h the
electron and hole densities will be only slightly different
and there is nearly no change in the binding energy EB.

We can check validity of the obtained results by com-
paring them to the exact analytic criteria which have
been derived in reference [18] for the problem of a bi-
exciton molecule. Frequently these criteria are not sat-
isfied by variational solutions. To check them we eval-
uate the energy functional (3) in the ground state and



T.A. Gloor et al.: Multiexciton molecules in the hexaborides 495

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7.65

−7.6

−7.55

−7.5

−7.45

−7.4

σ
e−h

E

Fig. 3. The binding energy of a 6-exciton molecule versus the
electron-to-hole mass ratio σe−h.

Table 3. The binding energy of a 6-exciton molecule for differ-
ent values of the electron-hole mass ratio σe−h. re, rh, λe, λh

are the optimal values of the variational parameters.

σe−h −EB −EB/6 re λe re λh

1.0 7.42 1.24 1.40 0.72 1.40 0.72
0.9 7.43 1.24 1.30 0.75 1.34 0.73
0.8 7.43 1.24 1.32 0.75 1.36 0.72
0.7 7.43 1.24 1.28 0.79 1.34 0.71
0.6 7.45 1.24 1.30 0.77 1.30 0.70
0.5 7.46 1.24 1.28 0.76 1.36 0.69
0.4 7.48 1.25 1.28 0.76 1.38 0.67
0.3 7.52 1.25 1.28 0.76 1.38 0.65
0.2 7.57 1.26 1.30 0.74 1.38 0.62
0.1 7.65 1.28 1.28 0.74 1.42 0.58

take it to be a function of σe−h: E(σe−h). From the
form of the Hamiltonian (1) it can be shown [18] that
[∂E(σe−h)/∂σe−h]σe−h=1 = 0 and that E(σe−h) has to be
a concave and monotonically increasing function of σe−h.
We see in Figure 3 that these two criteria are satisfied by
our solution, which further supports validity of the ob-
tained results.

3.3 Effect of mass anisotropy

According to the results of the previous subsection the
binding energy changes only very little for unequal elec-
tron and hole masses. Therefore, for simplicity we assume
that electron and hole dispersion are described by the
same anisotropic mass tensors. Otherwise, one has to deal
with too many variational parameters. As in the previous
section we limit our calculations to the 6-exciton molecule.
We define the reduced masses 1/m⊥ = 1/m⊥e +1/m⊥h and
1/m‖ = 1/m‖e + 1/m‖h and the ratio between the com-
ponents of the reduced mass tensor σa = m⊥/m‖, with
m⊥ < m‖ or σa < 1.

Table 4. The binding energy of a 6-exciton molecule for dif-
ferent values of the anisotropy parameter σa. d‖, d⊥ and ρ are
the values of the variational parameters.

σa −EB −EB/6 d‖ d⊥ ρ

1.0 7.42 1.24 0.52 0.52 1.94
0.9 7.43 1.24 0.52 0.55 1.78
0.8 7.44 1.24 0.49 0.56 1.78
0.7 7.45 1.24 0.47 0.57 1.76
0.6 7.49 1.25 0.43 0.58 1.76
0.5 7.54 1.26 0.40 0.59 1.73
0.4 7.61 1.27 0.35 0.59 1.73
0.3 7.73 1.29 0.30 0.60 1.69

0.255 7.81 1.30 0.27 0.60 1.66
0.2 7.93 1.32 0.23 0.61 1.62

The variational trial functions are taken to be again of
‘Fermi-Dirac’-type, but now we use functions with a cylin-
drical symmetry. In different valleys the wave-functions
are different. For the first valley they are defined as

ψκ,1(r) =
n0

1 + exp
(√

y2+z2

d2
⊥

+ x2

d2
‖
− ρ
) · (14)

n0 is the normalization constant and d⊥, d‖ and ρ are
the three variational parameters. The wave-functions for
particles in the other valleys are obtained by cyclical per-
mutations of x, y and z in analogy with the kinetic energy
operator K̂λ. This implies that the total density distribu-
tion is not spherically symmetric but is a superposition of
three ellipsoidal distributions along the coordinate axes.

The results of the minimization of the energy func-
tional (3) are presented in Table 4 for 0.2 < σa < 1.
Varying σa in this range produces an increase in the bind-
ing energy of 0.51Ex or 6%. For CaB6 the mass ratio is
0.255, which corresponds to an energy of 7.81 Ex and thus
to an increase in binding by 5%. Thus, mass anisotropy has
a somewhat stronger effect on binding energies of multi-
exciton molecules in the hexaborides than electron-to-hole
mass ratio, though both effects give only small corrections
to the simplest model with equal and isotropic masses.

4 Exciton complexes bound to impurities

It is well known that excitons in semiconductors are at-
tracted to charged donor or acceptor impurities [9–12]. We
investigate here the case of a monovalent donor impurity,
which models the effect of La3+-substitution in divalent-
metal hexaborides CaB6 and SrB6. We add an external
Coulomb potential to the Hamiltonian (1):

V̂ =
∑
λ

∫
drΨ†λ(r)VλΨλ(r) , V̂λ =

eqλ
εr

(15)

and assume equal and isotropic electron and hole masses.
(In this case there is an obvious symmetry between donors
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Table 5. The binding energies for different multiexciton com-
plexes. re, rh are the values of the variational parameters for
which the energy is minimized.

N −EB −(EB + 2)/N re rh

5 8.91 1.38 0.90 0.62
4 7.21 1.30 0.89 0.64
3 5.62 1.21 0.87 0.66
2 4.17 1.09 0.82 0.69
1 2.86 0.86 0.73 0.74

and acceptors.) At low impurity concentrations the elec-
trons and holes are completely localized at a single impu-
rity. The impurity adds a heavy center to the molecule.
Therefore, following the previous authors [12] we choose
the variational wave-functions in the hydrogenic form:

Re(r) =
1√
πr3

e

exp
(
− r

re

)
,

Rh(r) =
1√
3πr3

h

r

rh
exp

(
− r

rh

)
, (16)

with electrons and holes occupying respectively s- and
p-type orbitals near a positively charged donor. The re-
sults for the binding energies of multiexciton complexes
are presented in Table 5. The second column shows the
total energy of a complex −EB, which includes one ex-
tra electron in addition to N electron-hole pairs. All
complexes with N > 1 are stable against dissociation
into a next smaller complex and a free exciton, since
|EB(N + 1)−EB(N)| > Ex. To compare the energy gain
from a formation of a multiexciton complex to the energy
gain in a dense electron-hole plasma we need to subtract
fromEB the energy of a donor with a single electron, which
is approximately 2Ex. The third column shows that exci-
tons gain the most of energy in a 5-exciton complex, which
is again consistent with a filled shell argument. The energy
gain per one exciton in a 5-exciton complex exceeds the en-
ergy gain in a 6-exciton molecule. Hence, upon decreasing
the band gap charged impurities will work as nucleation
centers for electron-hole droplets and localized excitons
will appear before condensation of multiexciton molecules
in the bulk of a semiconductor.

The maximum possible energy gain per exciton in the
5-exciton complex ∆E = 1.38Ex is still below the energy
gain in a dense electron-hole plasma |Emin

g.s. | = 1.55Ex. Ef-
fective mass calculations have also been done for divalent
donors (acceptors) with 4 excitons being attracted, but we
did not find any additional energy lowering for them. This
result means that the direct first-order transition occurs
under pressure without an intermediate excitonic phase.
However, the two numbers are now closer to each other.
In such a case so-called central cell corrections to the ef-
fective mass approximation, which have been estimated in
reference [8] as ∆Ec.c. ∼ 0.2Ex for a single exciton, can be
sufficient to increase the energy gain per one exciton in a
donor complex compared to the energy density in a bulk
e-h plasma. As a result, an intermediate state of local-

ized excitons may appear under pressure. These localized
exciton complexes bound to charged impurities carry un-
compensated spin-1/2, as suggested by the shell scenario.
It is an interesting problem to understand whether such
an intermediate phase can be responsible for the unusual
relaxation effects in the hexaborides [13].

Usually, in lightly doped semiconductors (e.g. P in Si)
localized donor electrons develop antiferromagnetic cor-
relations between nearest-neighbor donors. This can be
understood in the following way. For two donor atoms,
which appear to be neighbors, the electronic hydrogen-
type orbitals hybridize forming a lower bonding orbital
and an upper antibonding orbital, similar to a hydrogen
molecule. The two extra electrons will go to the nonde-
generate bonding orbital and the Pauli principle requires
them to have opposite spins. We suggest that the opposite
sign ferromagnetic correlations will develop in a localized
excitonic phase of doped hexaborides. Their origin is in
additional multivalley degeneracy of electrons and holes
in the hexaborides. The bonding orbitals for two nearest-
neighbor donors have six-fold total degeneracy. We expect
that in such a case only 4 excitons will be attracted to
such a double center complex in order to fill the bond-
ing electron orbitals. The total spin of a double-impurity
complex (0 or 1) comes from a partially filled hole shell
(two ‘holes’ in the hole shell). In the case of degenerate or-
bitals the Hund’s rule plays the major role and produces
parallel alignment of spins of the two ‘holes.’ Similar sce-
nario applies also to divalent donors or acceptors. (In the
case of the hexaborides, Ca- or Sr-vacancies can play a
role of divalent acceptors.) Localized moments produced
in this way could be a source of the unusually fast NMR-
relaxation observed experimentally [13] and lead to sig-
nificant sample-to-sample variations of ferromagnetic mo-
ments in Ca1−xLaxB6 [7].

Estimation of the Hund’s splitting in multiexciton
complexes is an interesting open question. Note, that ordi-
nary semiconductors, like Si or Ge, also have a multivalley
structure of the conduction band. The degeneracy of donor
orbitals in these cases is partially lifted by anisotropic
central cell corrections, which select a nondegenerate low-
est level and, hence, suppress ferromagnetic correlations.
This effect might be present in multiexciton complexes as
well. However, the difference between the two cases is in
the shells which produce the total spin. In the multiexci-
ton complexes bound to a donor, uncompensated spin is
formed in the p-type hole shell. Wave-functions for these
states vanish at the origin equation (16) and have a small
probability in the central cell. Therefore, the states in the
hole shell are better described in the effective mass theory
than states in the electron shell and their splitting must
be less significant.

5 Conclusions

We have shown that the multivalley degeneracy which is
present in both the conduction and the valence bands of
the hexaboride materials leads to a number of peculiar ef-
fects: (i) 6-exciton molecules are stabilized due to the shell
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effect. Their binding energies are comparable to the exci-
ton binding energy in contrast to a weak binding energy of
a bi-exciton molecule. The energetics of the multiexciton
complexes is rather insensitive to the details of the band
structure: electron-to-hole mass ratio and anisotropy in
the effective mass tensors. (ii) Multiexciton complexes are
attracted to charged impurities. They have a larger energy
gain per one electron-hole pair than a 6-exciton molecule.
Therefore, upon decreasing a semiconducting gap excitons
will first condense at donors and acceptors producing an
intermediate phase of localized excitons. Though, the en-
ergy of this phase lies somewhat higher than the energy
gain in a dense electron-hole plasma, localized excitons can
be further stabilized by central cell effects or appear as a
metastable phase at the first-order transition between a
semiconducting and a semimetallic state. (iii) Uncompen-
sated spins on multiexciton complexes exhibit a tendency
towards ferromagnetic correlations rather than standard
antiferromagnetic correlations. This effect appears due to
a Hund’s type coupling on degenerate bonding orbitals
between two nearest multiexciton complexes. Uncompen-
sated spins formed on such localized exciton complexes
may play a role in very unusual relaxation dynamics of
nuclear spins observed in the hexaborides [13]

Our theoretical results indicate that a semiconducting
phase of divalent hexaborides may have a number of in-
teresting physical properties. Further experiments at am-
bient and applied pressure can shed more light on their
relevance to the physics of hexaborides.
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